

UMass mHealthLab: Campus-scale Testbed for Real-time Wearable Sensing and Analytics

- **Deployment**: Ongoing deployment of campus-scale testbed with 500-1000 subjects with continuous data from wearables and mobile devices.
- Platform: Scalable platform for streaming data collection from wearable sensors, massively parallel logging, real-time analytics and visualization.
- Scalability: Support for thousands of users and devices, diverse machine learning analytics, real-time feedback and interventions.

• Analytics: Ingested data immediately available to Machine Learning libraries, live sensor visualizations and dashboards

Machine Learning-based analytics with real-time notifications and interventions

Research Areas

Machine Learning for Mobile Health

- Sensor data analysis: Wireless ECG morphology extraction using Conditional Random Fields (CRF) and CRF + Context Free Grammar (CRF-CFG) models
- •Multi-modal inference: Leveraging diverse sensors on wearables and phones using Dynamic Bayesian Networks and CRFs to improve detection accuracy.
- Ground truth label availability: Training event detectors using multiple-instance (MI) learning and Active Learning methods.
- Lab-to-Field generalizability: Domain adaptation techniques to handle covariate shift, prior probability shift and label granularity shift.

Wearable Sensing & Health Applications

- Drug usage detection: Real-time detection of cocaine use in the natural environment using chest worn ECG sensors.
- Smoking and eating behaviors: Detection of smoking/eating/drinking behaviors via wrist-worn sensors and hand-to-mouth actions.

king Drinking Substance abuse

- Group dynamics sensing: Understanding group dynamics via context sensing, bluetooth interactions and WiFi logs.
- Fatigue detection: Fatigue detection using custom-designed low-power computational eyeglasses
- Context sensing: Combining location, time-of-day, physiology (pulse, GSR, ECG, eye movements), behaviors (via hand-to-mouth gestures) for continuous assessment.
- Neurological, Neuromuscular, and Muscular skeleton disorders: Novel sensors and remote monitoring systems for stroke, Parkinsons and Osteoarthritis.

MOSAIC: Research Interests and Capabilities

- Large-scale testbed for data collection, algorithm development, and field validation of MOSAIC.
- Scalable open-source platform and real-time machine learning analytics on multi-modal sensor streams; realtime interventions.

Deepak Ganesan, Professor Prashant Shenoy, Professor Benjamin Marlin, Assistant Professor Sunghoon (Ivan) Lee, Assistant Professor

Computer Science
University of Massachusetts Amherst